The Calabi Construction for Compact Ricci Flat Riemannian Manifolds
نویسندگان
چکیده
1. The main result and some consequences. In 1956 E. Calabi [6] attacked the classification problem of compact euclidean space forms by means of a special construction, called the Calabi construction (see Wolf [14, p. 124]). Here we announce that the construction can be extended to compact riemannian manifolds whose Ricci curvature tensor is zero (Ricci flat). Of course, it is not known if there exist any Ricci flat nonflat compact riemannian manifolds, and in fact a search for such manifolds was the original motivation for our study. However, as a consequence of our extension of Calabi's result we reduce the question of existence of a compact nonflat Ricci flat manifold to the simply connected, connected case. In any case, we essentially reduce the construction of compact Ricci flat manifolds to the lower-dimensional case together with the case of first Betti number zero. As a further consequence of our construction we extend one of the Bieberbach theorems [4], [14, Theorem 3.3.1] from the flat to the Ricci flat case (Theorem 1.4) and give various sufficient topological conditions for a Ricci flat manifold to be flat. Our main result is the following:
منابع مشابه
The Structure of Compact Ricci-flat Riemannian Manifolds
where k is the first Betti number b^M), T is a flat riemannian λ -torus, M~ is a compact connected Ricci-flat (n — λ;)-manifold, and Ψ is a finite group of fixed point free isometries of T x M' of a certain sort (Theorem 4.1). This extends Calabi's result on the structure of compact euclidean space forms ([7] see [20, p. 125]) from flat manifolds to Ricci-flat manifolds. We use it to essentiall...
متن کاملEvolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow
Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...
متن کاملRicci-flat Deformations of Asymptotically Cylindrical Calabi–yau Manifolds
We study a class of asymptotically cylindrical Ricci-flat Kähler metrics arising on quasiprojective manifolds. Using the Calabi–Yau geometry and analysis and the Kodaira–Kuranishi–Spencer theory and building up on results of N.Koiso, we show that under rather general hypotheses any local asymptotically cylindrical Ricci-flat deformations of such metrics are again Kähler, possibly with respect t...
متن کاملWarped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملOn the stability of Riemannian manifold with parallel spinors
Inspired by the recent work [HHM03], we prove two stability results for compact Riemannian manifolds with nonzero parallel spinors. Our first result says that Ricci flat metrics which also admit nonzero parallel spinors are stable (in the direction of changes in conformal structures) as the critical points of the total scalar curvature functional. Our second result, which is a local version of ...
متن کامل